Mining Significant Usage Patterns from Clickstream Data

نویسندگان

  • Lin Lu
  • Margaret H. Dunham
  • Yu Meng
چکیده

Discovery of usage patterns from Web data is one of the primary purposes for Web Usage Mining. In this paper, a technique to generate Significant Usage Patterns (SUP) is proposed and used to acquire significant “user preferred navigational trails”. The technique uses pipelined processing phases including sub-abstraction of sessionized Web clickstreams, clustering of the abstracted Web sessions, concept-based abstraction of the clustered sessions, and SUP generation. Using this technique, valuable customer behavior information can be extracted by Web site practitioners. Experiments conducted using Web log data provided by J.C.Penney demonstrate that SUPs of different types of customers are distinguishable and interpretable. This technique is particularly suited for analysis of dynamic websites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data Warehouse/OLAP Framework for Web Usage Mining and Business Intelligence Reporting

Web usage mining is the application of data mining techniques to discover usage patterns and behaviors from web data (clickstream, purchase information, customer information etc) in order to understand and serve e-commerce customers better and improve the online business. In this paper we present a general Data Warehouse/OLAP framework for web usage mining and business intelligence reporting. W...

متن کامل

Web Usage Mining Using Rough Agglomerative Clustering

Tremendous growth of the web world incorporates application of data mining techniques to the web logs. Data Mining and World Wide Web encompasses an important and active area of research. Web log mining is analysis of web log files with web pages sequences. Web mining is broadly classified as web content mining, web usage mining and web structure mining. Web usage mining is a techniques to disc...

متن کامل

Discovery of Significant Usage Patterns from Clusters of Clickstream Data

Discovery of usage patterns from Web data is one of the primary purposes for Web Usage Mining. In this paper, a variation of “user preferred navigational trail” called Significant Usage Pattern (SUP) is proposed. SUPs are patterns that are extracted from clustered abstracted clickstream data, with a higher normalized probability of occurrence and may begin/end with specific Web page(s). The nov...

متن کامل

Analysis & Visualization of EHR Patient Portal Clickstream Data

The purpose of this paper is the analysis of EHR clickstream data for patient portal to determine patient usage behavior by analyzing patterns found in the data. Clickstream data retains vital information trail of patient’s usage. Utilizing directed and undirected data mining techniques for data exploration and then visualizing specific patterns provide valuable information about how a patient ...

متن کامل

A data warehouse/online analytic processing framework for web usage mining and business intelligence reporting

Web usage mining is the application of data mining techniques to discover usage patterns and behaviors from web data (clickstream, purchase information, customer information, etc.) in order to understand and serve e-commerce customers better and improve the online business. In this article, we present a general data warehouse/online analytic processing (OLAP) framework for web usage mining and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005